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Helical harmonics for static fields
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Helical harmonic solutions of Laplace’s equation are derived using a right-handed nonorthogonal helical
coordinate system and a modified separation of variables technique. Unlike the Cartesian or cylindrical coor-
dinate systems, in the helical system, two different sets of solutions are admitted, one right handed and one left
handed. Consequently, the helical harmonics are used to solve the boundary value problem of two nested
helices with different radii set to different potential values.
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[. INTRODUCTION but wherefd and ¢ are measured along different curves. The
cylindrical/helical transformation of unit vectors is given by
Often it is believed that orthogonal coordinate systems arg2]
the only coordinate systems that can be usefully applied to

various boundary-value problems in physics. Although it is p=Ff, (43
realized that nonorthogonal systems composed of coordi- . .

nates coinciding with the boundary surfaces of a given ge- ¢=coSsayl+sinay2, (4b)
ometry are useful for straightforward application of bound-

ary conditions, it is known also that the partial differential (=2 (40)
equations(PDE’s) associated with such coordinates &ire

almost all casgsextremely difficult to solve analytically. In In the limit, as the pitcior the pitch anglegoes to zero,

particular, it is well known that the powerful separation of the helical system reduces to the standard cylindrical system.
variables technique will not work in general on PDE’s 0b'AIthough;3~Z=O andp- ¢=0, the nonorthogonality of this

tained using nonorthogonal coordinates. system occurs becausg- {=sinag, which is nonzero in
However, it is possible occasionally to find a nonorthogo- yneral 0

nal system whose associated PDE’s can be solved usm%e . , L
. ; . . In the following, we solve Laplace’s equation in the above
separation of variables. Such a system is a right-handed non- . : ;

. . nonorthogonal helical coordinate system using a somewhat
orthogonal helical coordinate system denoted(py ¢, ¢)

[1]. This system is related to the Cartesian system via the Odiﬁ?d sepgration of variables techn!que. The f.esu'“”g
traﬁsformatio 2-3] analytic solutions are referred to as helical harmonic func-
tions or simplyhelical harmonics Unlike the Cartesian or

cylindrical coordinate systems, in the helical system, two

X=p CoS, (1a different types of solutions are admitted, one right-handed
and one left-handed.

y=psing, (1b) In Sec. Il Laplace’s equation is solved generally in the
helical coordinate system. In Sec. lll, some unusual proper-

z={+po, (1c)  ties of the helical radial functions are discussed. In Sec. IV

the right-handed and left-handed types of solutions are dis-
wherep=p/27>0, pis the helical pitch, and the pitch angle cussed. In Sec. V, the helical harmonics are used to solve the

ag is defined as

y
P i e
tanag=—, 2 /<;<_?‘
P y \ﬁ
(see Fig. 1 K Reference surface for
This helical system is closely related to the standard cy- the helical system
lindrical coordinate systemr(#,z) by the coordinate rela- *
tionships
A .
= Reference surface for
r=p (33 the cylindrical system
lol=14l, (3b) >
[*]
z={+po, (30 FIG. 1. A nonorthogonal helical coordinate systgth
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boundary-value problem of two nested helices of differenttial terms in Eq(8) are the same, either both positive or both
potentials with different radii. Section VI contains the con- negative, Eq(10) can be written as
clusions.

!

R 1
R"+ —+ y’R+ —(Q—py)?R=0. (12)
Il. LAPLACE’'S EQUATION IN HELICAL COORDINATES p p

Laplace’s equation in the helical coordinate system of |f the signs of the exponential terms in E®) are differ-

Sec. | is ent, Eq.(10) becomes
#? 19 9 R, 1 .,
a_pZJFE%JFa_gZ R”+7+y R+?(Q+py) R=0. (12
2 2
+ i(a_ +5ﬂi Equationg(11) and(12) are both forms of Bessel's equation.
p°\ ae? 9L The general solution of Eq11) is
2
—2_(9;—0(#”@(;),(;),4“):0_ (5) R(p)=aidia-py(vp) +b1d ja-py(yp), (13
while the solution of Eq(12) is
Allowing
R(p)=axdia+pn(¥p) +b2d jaspy(yp). (14
D(p,$.0)=R(p)P($)Z(Y), (6) _ - _
The radial functions given by Eq$13) and(14) consist of
by substituting Eq(6) into Eq. (5), Eq. (5) becomes Bessel functions of both complex argument and complex or-
, ) , o der. Thus two general solutions of E§) for the potential in
R"(p) N R'(p) N P"($) +( p_) Z"({) the helical coordinate system result. One is
R(p)  pR(p) p°P(¢) p?] Z(0) D003 (bl )]
_ , P, ¢)=ladja-pylyp J-ic-pplypP
_QMZO (7) X | !l¢pyyé+d —Q4¢ I—vé N 15
o ROZD [etferrdie e H 19

The primes in Eq(7) denote differentiation with respect 'N€ other is
to p, ¢, and{ as appropriate. Although the variables in Eq.

(7) cannot be separated in the usual way'ifP, Z"/Z, and P(p.d. ) =[a2di+py(¥P) TD2ia+py(7p)]
P’Z'/PZ are all constant, Eq.7) can be reduced to an or- X[c,e??e” 7+ d,e” *er!]. (16)
dinary differential equatiofODE) in the variablep alone.
The above quantities can all be constant wh&id) and Equations(15) and (16) are two analytic exact solutions
P(¢) are assumed priori to be exponential functions. of Laplace’s equation in the right-handed nonorthogonal he-
Let lical coordinate system of Sec. |I. They are the helical har-
monics. The Bessel functions occurring in the radial portion
P(¢)=e"2% Z(y)=e"", (8 of Egs.(15) and (16) will be referred to throughout as the
helical Bessel functions
where

Formally, both Eqs(15) and(16) are similar to the cylin-
drical harmonics[4—5] but with several important differ-

Q=vtip (9a) ences. First, in both Eq415) and (16), the parametef)
and =yp+iu does not necessarily have to be an integer as it
would in a standard cylindrical system. Second, sipgeis
y=a+ip. (9b) not (in general an integer quantity either, the Bessel function

orders in Egs(15) and (16) are noninteger in general and
Q and y are separation constansot functions of the coor- may be complex. Third, the Bessel functions in E4$) and
dinateg and are complex. The constants, v, «, andg are  (16) have orders that are functions of the separation constant,
all assumed to be real and positive. Upon taking the approy, along the{ direction and are no longer constant for dif-
priate derivatives of Eq(8) and substituting them into Eqg. ferent values ofy. For both Eqs(15) and(16) in the limit as
(7), Eq. (7) becomes the normalized pitcfp goes to zero, these equations reduce
to the same solution that is the usual cylindrical harmonic

R" R’ P N N o solution whereQ)=*iu and y=*iB with u restricted to
R p_R+7 + ?[Q +(py)*=2p(= Q) (£ 7)]=0. being an integer.
(10) Note that a helically symmetric solution, i.e., gadepen-

dence, occurs when the separation consfaris zero. For
Because of the mixed partial term in E®), Eq. (10) is  this circumstance, Eqg15) and (16) again reduce to the
actually two different equations. If the signs of the exponensame solution given by
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®=[alp,(yp)+bI iz (vp)llce’+de 7]
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(17 (The values of the constants used in E@sl) and (25) are

not the same as those in Eq20) and (21).)

Two special cases of Eq§l5) and (16) will be consid- In Egs. (24) and (25), the helical Bessel functions have

ered.

A. Case |: v=a=0

When the separation constarfisandy, are purely imagi-
nary, we are assuming no attenuation or gain in eitherthe

or £ directions. In this case, Eql5) becomes
D=[ayl ,—pp(Bp) +bil —(—pp)(Bp)]
X[cielnPelPitdierde 1AL,
while Eqg.(16) becomes
D=[azl ,+pp(Bp) +03l _(uipp)(Bp)]
X[coe'rPe 1P+ dje ndel AL,

In Egs.(18) and(19), the radial functions are now
fied Bessel functions with arguments and orders
purely real. In Eq.(18) if c;=d;=1 orc;=—d;=1,
(18) could have been written as

’ ’ co + )
®=[ajl,,ps(Bp) + il wpmwm][ e

where the factors of or 3 have been included ia; andbj.
Similarly, in Eq.(19) if c;=d5=1 orc,=—d;=1, Eq.(19

could have the form

, , co —BI)
®=[a,l,pp(Bp)+byl (M+H,3)(,3P)][ Siiﬁi_ gé)

} J o= [al|ﬁﬁ(ﬁp) + byl ,Eﬁ(ﬁp)][cleiﬂf_;_ dlefiﬁg].
(20

(21

real arguments but complex orders. Regardless of the fact
that i, @, p, and ¢ are real and positive, the helical Bessel
functions in this case are complex.

The other special cases, whetie= =0 and u=8=0
are, of course, similarly done.

IIl. SOME PROPERTIES OF THE HELICAL BESSEL
FUNCTIONS

(18 It is important to realize that because the separation con-

stant in the direction shows up in the order, as well as the
argument, of the helical Bessel functions, the behavior of
these functions is somewhat different from that of the cylin-
drical Bessel functions where the order is a fixed integer with

(19 the order independent of the parameters appearing in the ar-

modi- 9ument.
that ar The two special cases in Sec. Il will be considered in
Eq Getail. Assuming that=a=0 as in Case |, the potential is

given by Egqs(18) and(19). By assuming that.=0 also, the
helically symmetric solution for this case is given by

(26)

In Eq. (26), the parameterp, B, p, and{ are all positive
and real. Whem is noninteger|;5(8p) andl _55(8p) are
linearly independent. Under the condition tfpg is integer,
Eq. (26) must take the form

}- ® =[als5(Bp) +bKps(Bp) [[ceFi+de ], (27)

Note that asB tends to zero fop, p fixed,

Note that Eqs(20) and(21) exhibit a fundamental differ-

ence between the helical and cylindrical coordinate

In the helical system, unlegs=0, it is not possible to have

a completely separable solution with the trigonometric formgng

Gp=1(,-pp(Bp)coSu cosBy,
while in a cylindrical system, the separable form
®.=1,(Br)cosndcospBz,

(wheren is now an integeris always possible.

B. Case Il: v=8=0

systems. lim I55(Bp)=1 (283
p—0
22 lim | _55(Bp)=1 (28b)
B—0
(23)  also, but
lim Kgp(Bp)=+. (280
B—0

For p and 3 fixed, as the radial coordinatg, approaches

When the separation constant along thedirection is  zero
purely imaginary, but the separation constant along Zhe

direction is purely real, there is attenuati@r gain along{. lim 155(Bp)=0 (293
Thus, Eq.(15) becomes p—0
D =[a1J(uripw)(@p) +D1I_(4riva(ap)][cie' Pe but
+dje'#lem o], (24) |im0 | _5p(Bp)=+20, (29b)
p—
while Eq. (16) becomes
, , while
®=[aJ(,—ipa)(a@p) +brJ_(,_ipa)(ap)]
X[chel#Pe”*l+dye  #Pe!], (25) ,llToKpﬁ(ﬁp) - (299
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For Ky5(Bp), the approach to infinity ap—0 is a strong its argument becomes large, i.e., its real and imaginary parts
function of the orderpp. Forl;5(B8p) andl _p5(Bp), when  both oscillate but the oscillations decrease in magnitude to-
ppB is integer, these two functions are identical, but they arevard zero as the argument increases. This same general be-
also very close to each other in value wheneggrexceeds havior is exhibited byHleiga(ap). Thus, for solving
|pB|. Both these functions increase without bound3as p boundary-value problems, E(R4) may be replaced by
becomes large.

Thus, for any region of space where the radial coordinate

is close to zero, one should use thg(Bp) function since it ®=[c1J,sipalap)+ csziiaa(ap)]
is finite there. When the radial coordinate is large, the o R
Kps(Bp) function should be used since it tends to zerggas X[cae e +che %4, (34)

or p becomes large.

Whether one usds,s(8p), | —55(8p), or Kgs(Bp), none
of these functions possess real zeros wperB, andp are
positive and real. Thus, the solution in E&7) can only be
used for boundary-value problems in which zeros occur
along the{ direction, i.e., along the helix, not the radial
direction. X [Caefi/“l’eag_’_ Cz’lei#¢e7 a{]. (35)

The above modified Bessel functions can be written in a
somewhat different form. If one assumes that

while Eq. (25 may be replaced by

®=[c1J,_ipalap)+ciHY = (ap)]

pPB=o0, (30 IV. RIGHT-HANDED AND LEFT-HANDED HELICAL
- HARMONICS
whereq is a dimensionless quantity, then usiég o/p, one

can write Obviously from consideration of Secs. | and II, one could

assume either a right-handed helical coordinate system (
lop(Bp)=1,(aplp). (3D >0) or a left-handed onep0). Standard practice is to
. choose a right-handed system. However, the helix is a struc-
Using p/p=ctn ap=y, another dimensionless quantity, ture which can be either left-handed or right-handed, and this

wherea is the pitch angle, Eq31) becomes handedness is an intrinsic quality. A left-handed helix cannot
- | 32 be transformed into a right-handed helix and vice versa. This
pa(BP)=14(0X). (32) is completely unlike a sphere or a cylinder that have no such

property. Thus, if a right-handed coordinate system is cho-
en, it is necessary to know how to deal with both right- and
eft-handed solutions in such a system. Using previous con-

ventions[1], and assuming Case | wheRg ¢) =€~ '#* and

e Z(y=e""",

Both | ,(ox) andK (ox) have uniform asymptotic expan-
sions for large orders associated with them from which w
can write the approximations]

1
|, ~ 33
(ox) \/%(14_)(2)1/4 (339 | |
Dr=[a1l(,—ps)(Bp) + b1l _(,_pp(Bp) e #Pe1FL
and (36)
T e 97
Kolox)~ 20 (1+X2)17 ! (33D is considered to be a right-handed helical harmonic solution
of Laplace’s equation. The parameters and coordingies,
where M, ¢, p, andp are all assumed to be positive and real.
By assuming thaP(¢)=¢'*?, Z({)=e '#¢,
=1 Xt In| — |, (330
1+VJ1+y

D =[al (455 (Bp) +bal _(,1pp(Bp)]e' Pe AL
Now, assuming that=8=0 as in Case I, the potential (37)
is given by Egs.(24) and (25). In this case, the function
J,+ipa(ap) (and all its variantsis complex whemp, a, u,
and p are all positive and real. Both its real and imaginary
parts oscillate without bound as increases whep and p
are fixed. ThusJ, . z.(ap) should be used only near
=0 where it is finite, i.e., for interior types of boundary- W
value problems. For exterior boundary-value problems,
wherep can be large, it is necessary to Uftgl@(ap), the
Hankel function of the second kind. It, too, is a complex ®=[ayl, 5z (Bp)e “+ayl ,.ps(Bp)e *le 1P,
function, but its real and imaginary parts are well behaved as (39

is considered to be a left-handed helical harmonic since it
rotates alongg in the opposite direction to the solution in
Eq. (36) but with the same dependence alang

Assuming thath;=b,=0, by adding Eqs(36) and(37),

e get a combined right- and left-handed solution given by
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-1 _ 4.5 There are three regions where the potential must be con-
~ % 9.5 sidered: Region 1 where<QOp=<a, Region 2 wherea<p

1 =<b, and Region 3 wherp=b. In Region 1, the potential is
assumed to have the general form,

1= A[Jiga(ap)+I_i5,(ap)lsinhal. (393

@, is assumed to be independent of the coordinAfe
=0) and the form in Eq(39a is used to ensure thdt; will
be purely real sinc&, andV, are assumed to be real con-
stants.

In Region 2, the potential is assumed to have the form

D,={B[Jipa(ap)+J ipalap)]

+C[H{Z (ap)+HY Tisinhaz. (39D

q

TG

q

C
C
C
C

Finally in Region 3,
®3=D[H2 (ap) +HYS (ap)lsinhas. (390

Four boundary conditions must be met:

®,=V,; on p=a, {={o, (409
®,=V; on p=a, {={o, (40b)
®,=V, on p=b, {(={,, (400
d;=V, on p=hb, {={,. (40d)

(Note that two conditions must be met simultaneously, i.e.,
p=constant and = constant to ensure that one is on a given
helix.)

Applying the boundary conditions in E¢40) to the po-
tentials in Eq(39) and solving for the constants, B, G and
D, the following formulas are obtained:

Am Tt 41
~ Jasinha{,’ (413
1 "~ [JaHb—JbHa]sinhal,’ (410
.5
co —[V1Ib—VyJa] (410
[JaHb—JbHa]sinha{,’
and
FIG. 2. Two nested helices with identical length and pitch but
different radii set to different potential valuga=0.5, b=1.0, D= Vo (410)
p=1.0 ~ Hbsinha{y’
V. A HELICAL BOUNDARY VALUE PROBLEM where
Assume that two nested helices with identical pitches and L B
lengths but different radii are positioned along thaxis as Ja=Jipu(aa)+J_jp,(aa), (429
in Fig. 2. The inner helix with radius a has a potent\d,. . -
The outer helix with radiud is at a different potential,. Ib=Jipalab) +Jipa(ab), (42b)
We wish to obtain the potential at all points in space. It is @) (1)
assumed also that the helices run from Oitb along thez Ha=Hi; (aa)+HIg (aa), (420
axis and that their length is much greater than their radii so 2 (1)
that end effects may be neglected. Hb=H 7 (ab)+H5 (ab). (420
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By substituting Eq.(41) back into Eqg.(39), the potential [Jipa(@a) +I_5.(a@a)]=2 R4 Jip,(@a)]=0. (45)
from the two helices at any point in space is given by
Vil Jipalap) +I_ipa(ap)]sinhal This condition is satisfied whea is chosen to be a zero of
¢, = Jasinhat (438 Eq.(45), a*, causing
©,={(ViHb—VoHa)[Jip.(ap) +I_ipalap)] ReJigax (a*a)]=0. (46)
—(V1Jb—=Voda)[H{Z (ap) +H S (ap)T}
) Thus, this special case whekg =0 justifies our initial
% sinhag _ (43p  use of thediz,(ap) and Hi%(ap) functions as opposed to
[Ja Hb—Jb Ha]sinha{, the modified helical Bessel functions in Case | of Sec. II,
q since the modified helical Bessel functions have no real zeros
an associated with them.
Vo[H2 (ap)+HY5 (ap)Isinhal a0
3= Hb sinha, ' 9 VI. CONCLUSIONS
By Considering the Specia' case th@zo, i_e_' the Helical harmonic SOlUtionS Of Lap|aCE'S equation haVe
inner helix atp=a, {={,, and®,=®,=0 there, the po- been derived using a right-handed nonorthogonal helical co-
tential of Region 1 must be written as ordinate system and a modified separation of variables tech-
nique. Unlike the Cartesian or cylindrical coordinate sys-
sinha{ tems, in the helical system, two different sets of solutions are
®1=[Jipa(@p) +I-ipa(@p)] sinhal,’ (44 admitted, one right handed and one left handed. Conse-

quently, the helical harmonics are used to solve the
and to satisfy®,;=0 on p=a, {={,, we must have the boundary-value problem of two nested helices with different

condition radii set to different potential values.
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