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Helical harmonics for static fields
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Helical harmonic solutions of Laplace’s equation are derived using a right-handed nonorthogonal helical
coordinate system and a modified separation of variables technique. Unlike the Cartesian or cylindrical coor-
dinate systems, in the helical system, two different sets of solutions are admitted, one right handed and one left
handed. Consequently, the helical harmonics are used to solve the boundary value problem of two nested
helices with different radii set to different potential values.
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I. INTRODUCTION

Often it is believed that orthogonal coordinate systems
the only coordinate systems that can be usefully applied
various boundary-value problems in physics. Although it
realized that nonorthogonal systems composed of coo
nates coinciding with the boundary surfaces of a given
ometry are useful for straightforward application of boun
ary conditions, it is known also that the partial different
equations~PDE’s! associated with such coordinates are~in
almost all cases! extremely difficult to solve analytically. In
particular, it is well known that the powerful separation
variables technique will not work in general on PDE’s o
tained using nonorthogonal coordinates.

However, it is possible occasionally to find a nonorthog
nal system whose associated PDE’s can be solved u
separation of variables. Such a system is a right-handed
orthogonal helical coordinate system denoted by~r, f, z!
@1#. This system is related to the Cartesian system via
transformation@2–3#

x5r cosf, ~1a!

y5r sinf, ~1b!

z5z1 p̄f, ~1c!

wherep̄5p/2p.0, p is the helical pitch, and the pitch ang
a0 is defined as

tana05
p̄

r
, ~2!

~see Fig. 1!.
This helical system is closely related to the standard

lindrical coordinate system (r ,u,z) by the coordinate rela
tionships

r 5r, ~3a!

uuu5ufu, ~3b!

z5z1 p̄f, ~3c!
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but whereu andf are measured along different curves. T
cylindrical/helical transformation of unit vectors is given b
@2#

r̂5 r̂ , ~4a!

f̂5cosa0û1sina0ẑ, ~4b!

ẑ5 ẑ. ~4c!

In the limit, as the pitch~or the pitch angle! goes to zero,
the helical system reduces to the standard cylindrical syst
Although r̂• ẑ50 andr̂•f̂50, the nonorthogonality of this
system occurs becausef̂• ẑ5sina0, which is nonzero in
general.

In the following, we solve Laplace’s equation in the abo
nonorthogonal helical coordinate system using a somew
modified separation of variables technique. The result
analytic solutions are referred to as helical harmonic fu
tions or simplyhelical harmonics. Unlike the Cartesian or
cylindrical coordinate systems, in the helical system, t
different types of solutions are admitted, one right-hand
and one left-handed.

In Sec. II Laplace’s equation is solved generally in t
helical coordinate system. In Sec. III, some unusual prop
ties of the helical radial functions are discussed. In Sec.
the right-handed and left-handed types of solutions are
cussed. In Sec. V, the helical harmonics are used to solve

FIG. 1. A nonorthogonal helical coordinate system@1#.
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boundary-value problem of two nested helices of differ
potentials with different radii. Section VI contains the co
clusions.

II. LAPLACE’S EQUATION IN HELICAL COORDINATES

Laplace’s equation in the helical coordinate system
Sec. I is

F ]2

]r2 1
1

r

]

]r
1

]2

]z2

1
1

r2 S ]2

]f2 1 p̄2
]2

]z2

22p̄
]2

]z]f D GF~r,f,z!50. ~5!

Allowing

F~r,f,z!5R~r!P~f!Z~z!, ~6!

by substituting Eq.~6! into Eq. ~5!, Eq. ~5! becomes

R9~r!

R~r!
1

R8~r!

rR~r!
1

P9~f!

r2P~f!
1S 11

p̄2

r2D Z9~z!

Z~z!

2
2p̄

r2

P8~f!Z8~z!

P~f!Z~z!
50. ~7!

The primes in Eq.~7! denote differentiation with respec
to r, f, andz as appropriate. Although the variables in E
~7! cannot be separated in the usual way, ifP9/P, Z9/Z, and
P8Z8/PZ are all constant, Eq.~7! can be reduced to an or
dinary differential equation~ODE! in the variabler alone.
The above quantities can all be constant whenZ(z) and
P(f) are assumeda priori to be exponential functions.

Let

P~f!5e6Vf; Z~z!5e6gz, ~8!

where

V5n1 im ~9a!

and

g5a1 ib. ~9b!

V andg are separation constants~not functions of the coor-
dinates! and are complex. The constants,m, n, a, andb are
all assumed to be real and positive. Upon taking the app
priate derivatives of Eq.~8! and substituting them into Eq
~7!, Eq. ~7! becomes

R9

R
1

R8

rR
1g21

1

r2 @V21~ p̄g!222p̄~6V!~6g!#50.

~10!

Because of the mixed partial term in Eq.~5!, Eq. ~10! is
actually two different equations. If the signs of the expone
03660
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tial terms in Eq.~8! are the same, either both positive or bo
negative, Eq.~10! can be written as

R91
R8

r
1g2R1

1

r2 ~V2 p̄g!2R50. ~11!

If the signs of the exponential terms in Eq.~8! are differ-
ent, Eq.~10! becomes

R91
R8

r
1g2R1

1

r2 ~V1 p̄g!2R50. ~12!

Equations~11! and~12! are both forms of Bessel’s equation
The general solution of Eq.~11! is

R~r!5a1Ji ~V2 p̄g!~gr!1b1J2 i ~V2 p̄g!~gr!, ~13!

while the solution of Eq.~12! is

R~r!5a2Ji ~V1 p̄g!~gr!1b2J2 i ~V1 p̄g!~gr!. ~14!

The radial functions given by Eqs.~13! and ~14! consist of
Bessel functions of both complex argument and complex
der. Thus two general solutions of Eq.~5! for the potential in
the helical coordinate system result. One is

F~r,f,z!5@a1Ji ~V2 p̄g!~gr!1b1J2 i ~V2 p̄g!~gr!#

3@c1eVfegz1d1e2Vfe2gz#. ~15!

The other is

F~r,f,z!5@a2Ji ~V1 p̄g!~gr!1b2J2 i ~V1 p̄g!~gr!#

3@c2eVfe2gz1d2e2Vfegz#. ~16!

Equations~15! and ~16! are two analytic exact solution
of Laplace’s equation in the right-handed nonorthogonal
lical coordinate system of Sec. I. They are the helical h
monics. The Bessel functions occurring in the radial port
of Eqs. ~15! and ~16! will be referred to throughout as th
helical Bessel functions.

Formally, both Eqs.~15! and~16! are similar to the cylin-
drical harmonics@4–5# but with several important differ-
ences. First, in both Eqs.~15! and ~16!, the parameterV
5n1 im does not necessarily have to be an integer a
would in a standard cylindrical system. Second, sincep̄g is
not ~in general! an integer quantity either, the Bessel functio
orders in Eqs.~15! and ~16! are noninteger in general an
may be complex. Third, the Bessel functions in Eqs.~15! and
~16! have orders that are functions of the separation const
g, along thez direction and are no longer constant for d
ferent values ofg. For both Eqs.~15! and~16! in the limit as
the normalized pitchp̄ goes to zero, these equations redu
to the same solution that is the usual cylindrical harmo
solution whereV56 im and g56 ib with m restricted to
being an integer.

Note that a helically symmetric solution, i.e., nof depen-
dence, occurs when the separation constantV is zero. For
this circumstance, Eqs.~15! and ~16! again reduce to the
same solution given by
3-2
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F5@aJip̄g~gr!1bJ2 i p̄g~gr!#@cegz1de2gz#. ~17!

Two special cases of Eqs.~15! and ~16! will be consid-
ered.

A. Case I: nÄaÄ0

When the separation constants,V andg, are purely imagi-
nary, we are assuming no attenuation or gain in either thf
or z directions. In this case, Eq.~15! becomes

F5@a18I m2 p̄b~br!1b18I 2~m2 p̄b!~br!#

3@c18e
imfeibz1d18e

2 imfe2 ibz#, ~18!

while Eq. ~16! becomes

F5@a28I m1 p̄b~br!1b28I 2~m1 p̄b!~br!#

3@c28e
imfe2 ibz1d28e

2 imfeibz#. ~19!

In Eqs.~18! and~19!, the radial functions are now mod
fied Bessel functions with arguments and orders that
purely real. In Eq.~18! if c185d1851 or c1852d1851, Eq.
~18! could have been written as

F5@a18I m2 p̄b~br!1b18I 2~m2 p̄b!~br!#H cos~mf1bz!

sin~mf1bz! J ,

~20!

where the factors of12 or 1
2i have been included ina18 andb18.

Similarly, in Eq.~19! if c285d2851 or c2852d2851, Eq.~19!
could have the form

F5@a28I m1 p̄b~br!1b28I 2~m1 p̄b!~br!#H cos~mf2bz!

sin~mf2bz! J .

~21!

Note that Eqs.~20! and~21! exhibit a fundamental differ-
ence between the helical and cylindrical coordinate syste
In the helical system, unlessm50, it is not possible to have
a completely separable solution with the trigonometric fo

Fh5I ~m2 p̄b~br!cosmf cosbz, ~22!

while in a cylindrical system, the separable form

Fc5I n~br !cosnu cosbz, ~23!

~wheren is now an integer! is always possible.

B. Case II: nÄbÄ0

When the separation constant along thef direction is
purely imaginary, but the separation constant along thz
direction is purely real, there is attenuation~or gain! alongz.
Thus, Eq.~15! becomes

F5@a18J~m1 i p̄a!~ar!1b18J2~m1 i p̄a!~ar!#@c18e
imfeaz

1d18e
2 imfe2az#, ~24!

while Eq. ~16! becomes

F5@a28J~m2 i p̄a!~ar!1b28J2~m2 i p̄a!~ar!#

3@c28e
imfe2az1d28e

2 imfeaz#. ~25!
03660
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~The values of the constants used in Eqs.~24! and ~25! are
not the same as those in Eqs.~20! and ~21!.!

In Eqs. ~24! and ~25!, the helical Bessel functions hav
real arguments but complex orders. Regardless of the
that m, a, r, andz are real and positive, the helical Bess
functions in this case are complex.

The other special cases, wherem5a50 and m5b50
are, of course, similarly done.

III. SOME PROPERTIES OF THE HELICAL BESSEL
FUNCTIONS

It is important to realize that because the separation c
stant in thez direction shows up in the order, as well as t
argument, of the helical Bessel functions, the behavior
these functions is somewhat different from that of the cyl
drical Bessel functions where the order is a fixed integer w
the order independent of the parameters appearing in the
gument.

The two special cases in Sec. II will be considered
detail. Assuming thatn5a50 as in Case I, the potential i
given by Eqs.~18! and~19!. By assuming thatm50 also, the
helically symmetric solution for this case is given by

F5@a1I p̄b~br!1b1I 2 p̄b~br!#@c1eibz1d1e2 ibz#.
~26!

In Eq. ~26!, the parametersp̄, b, r, andz are all positive
and real. Whenp̄b is noninteger,I p̄b(br) andI 2 p̄b(br) are
linearly independent. Under the condition thatp̄b is integer,
Eq. ~26! must take the form

F5@aI p̄b~br!1bKp̄b~br!#@ceibz1de2 ibz#. ~27!

Note that asb tends to zero forp̄, r fixed,

lim
b→0

I p̄b~br!51 ~28a!

and

lim
b→0

I 2 p̄b~br!51 ~28b!

also, but

lim
b→0

Kp̄b~br!51`. ~28c!

For p̄ andb fixed, as the radial coordinate,r, approaches
zero

lim
r→0

I p̄b~br!50 ~29a!

but

lim
r→0

I 2 p̄b~br!51`, ~29b!

while

lim
r→0

Kp̄b~br!51`. ~29c!
3-3
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For Kp̄b(br), the approach to infinity asr→0 is a strong
function of the order,p̄b. For I p̄b(br) andI 2 p̄b(br), when
p̄b is integer, these two functions are identical, but they
also very close to each other in value wheneverbr exceeds
u p̄bu. Both these functions increase without bound asb or r
becomes large.

Thus, for any region of space where the radial coordin
is close to zero, one should use theI p̄b(br) function since it
is finite there. When the radial coordinate is large,
Kp̄b(br) function should be used since it tends to zero ab
or r becomes large.

Whether one usesI p̄b(br), I 2 p̄b(br), or Kp̄b(br), none
of these functions possess real zeros whenp̄, b, andr are
positive and real. Thus, the solution in Eq.~27! can only be
used for boundary-value problems in which zeros oc
along thez direction, i.e., along the helix, not the radi
direction.

The above modified Bessel functions can be written i
somewhat different form. If one assumes that

p̄b5s, ~30!

wheres is a dimensionless quantity, then usingb5s/ p̄, one
can write

I p̄b~br!5I s~sr/ p̄!. ~31!

Using r/ p̄5ctn a05x, another dimensionless quantit
wherea0 is the pitch angle, Eq.~31! becomes

I p̄b~br!5I s~sx!. ~32!

Both I s(sx) and Ks(sx) have uniform asymptotic expan
sions for large orders associated with them from which
can write the approximations@6#

I s~sx!'
1

A2ps

esh

~11x2!1/4 ~33a!

and

Ks~sx!'A p

2s

e2sh

~11x2!1/4, ~33b!

where

h5A11x21 lnF x

11A11x2G . ~33c!

Now, assuming thatn5b50 as in Case II, the potentia
is given by Eqs.~24! and ~25!. In this case, the function
Jm1 i p̄a(ar) ~and all its variants! is complex whenp̄, a, m,
and r are all positive and real. Both its real and imagina
parts oscillate without bound asa increases whenp̄ and r
are fixed. Thus,Jm1 i p̄a(ar) should be used only nearr
50 where it is finite, i.e., for interior types of boundar
value problems. For exterior boundary-value problem
wherer can be large, it is necessary to useHm1 i p̄a

(2) (ar), the
Hankel function of the second kind. It, too, is a compl
function, but its real and imaginary parts are well behaved
03660
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its argument becomes large, i.e., its real and imaginary p
both oscillate but the oscillations decrease in magnitude
ward zero as the argument increases. This same genera
havior is exhibited byHm2 i p̄a

(1) (ar). Thus, for solving
boundary-value problems, Eq.~24! may be replaced by

F5@c1Jm1 i p̄a~ar!1c2Hm1 i p̄a
~2! ~ar!#

3@c3eimfeaz1c4e2 imfe2az#, ~34!

while Eq. ~25! may be replaced by

F5@c18Jm2 i p̄a~ar!1c28Hm2 i p̄a
~1! ~ar!#

3@c38e
2 imfeaz1c48e

imfe2az#. ~35!

IV. RIGHT-HANDED AND LEFT-HANDED HELICAL
HARMONICS

Obviously from consideration of Secs. I and II, one cou
assume either a right-handed helical coordinate systemp̄
.0) or a left-handed one (p̄,0). Standard practice is to
choose a right-handed system. However, the helix is a st
ture which can be either left-handed or right-handed, and
handedness is an intrinsic quality. A left-handed helix can
be transformed into a right-handed helix and vice versa. T
is completely unlike a sphere or a cylinder that have no s
property. Thus, if a right-handed coordinate system is c
sen, it is necessary to know how to deal with both right- a
left-handed solutions in such a system. Using previous c
ventions@1#, and assuming Case I whereP(f)5e2 imf and
Z(z)5e2 ibz,

FR5@a1I ~m2 p̄b!~br!1b1I 2~m2 p̄b!~br!#e2 imfe2 ibz

~36!

is considered to be a right-handed helical harmonic solu
of Laplace’s equation. The parameters and coordinates,b, z,
m, f, r, and p̄ are all assumed to be positive and real.

By assuming thatP(f)5eimf, Z(z)5e2 ibz,

FL5@a2I ~m1 p̄b!~br!1b2I 2~m1 p̄b!~br!#eimfe2 ibz

~37!

is considered to be a left-handed helical harmonic sinc
rotates alongf in the opposite direction to the solution i
Eq. ~36! but with the same dependence alongz.

Assuming thatb15b250, by adding Eqs.~36! and ~37!,
we get a combined right- and left-handed solution given

F5@a1I ~m2 p̄b!~br!e2 imf1a2I ~m1 p̄b!~br!eimf#e2 ibz.
~38!
3-4
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V. A HELICAL BOUNDARY VALUE PROBLEM

Assume that two nested helices with identical pitches
lengths but different radii are positioned along thez axis as
in Fig. 2. The inner helix with radius a has a potential,V1 .
The outer helix with radiusb is at a different potential,V0 .
We wish to obtain the potential at all points in space. It
assumed also that the helices run from 0 to1L along thez
axis and that their length is much greater than their radi
that end effects may be neglected.

FIG. 2. Two nested helices with identical length and pitch b
different radii set to different potential values~a50.5, b51.0,
p51.0!
03660
d
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There are three regions where the potential must be c
sidered: Region 1 where 0,r<a, Region 2 wherea<r
<b, and Region 3 wherer>b. In Region 1, the potential is
assumed to have the general form,

F15A@Jip̄a~ar!1J2 i p̄a~ar!#sinhaz. ~39a!

F1 is assumed to be independent of the coordinatef(m
50) and the form in Eq.~39a! is used to ensure thatF1 will
be purely real sinceV0 andV1 are assumed to be real con
stants.

In Region 2, the potential is assumed to have the form

F25$B@Jip̄a~ar!1J2 i p̄a~ar!#

1C@Hip̄a
~2! ~ar!1H2 i p̄a

~1! #%sinhaz. ~39b!

Finally in Region 3,

F35D@Hip̄a
~2! ~ar!1H2 i p̄a

~1! ~ar!#sinhaz. ~39c!

Four boundary conditions must be met:

F15V1 on r5a, z5z0 , ~40a!

F25V1 on r5a, z5z0 , ~40b!

F25V0 on r5b, z5z0 , ~40c!

F35V0 on r5b, z5z0 . ~40d!

~Note that two conditions must be met simultaneously, i
r5constant andz5constant to ensure that one is on a giv
helix.!

Applying the boundary conditions in Eq.~40! to the po-
tentials in Eq.~39! and solving for the constants,A, B, C, and
D, the following formulas are obtained:

A5
V1

Ja sinhaz0
, ~41a!

B5
V1Hb2V0Ha

@JaHb2JbHa#sinhaz0
, ~41b!

C5
2@V1Jb2V0Ja#

@JaHb2JbHa#sinhaz0
, ~41c!

and

D5
V0

Hb sinhaz0
, ~41d!

where

Ja5Jip̄a~aa!1J2 i p̄a~aa!, ~42a!

Jb5Jip̄a~ab!1J2 i p̄a~ab!, ~42b!

Ha5Hip̄a
~2! ~aa!1H2 i p̄a

~1! ~aa!, ~42c!

Hb5Hip̄a
~2! ~ab!1H2 i p̄a

~1! ~ab!. ~42d!

t
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By substituting Eq.~41! back into Eq.~39!, the potential
from the two helices at any point in space is given by

F15
V1@Jip̄a~ar!1J2 i p̄a~ar!#sinhaz

Ja sinhaz0
~43a!

F25$~V1Hb2V0Ha!@Jip̄a~ar!1J2 i p̄a~ar!#

2~V1Jb2V0Ja!@Hip̄a
~2! ~ar!1H2 i p̄a

~1! ~ar!#%

3
sinhaz

@Ja Hb2Jb Ha#sinhaz0
~43b!

and

F35
V0@Hip̄a

~2! ~ar!1H2 i p̄a
~1! ~ar!#sinhaz

Hb sinhaz0
. ~43c!

By considering the special case whereV150, i.e., the
inner helix atr5a, z5z0 , andF15F250 there, the po-
tential of Region 1 must be written as

F15@Jip̄a~ar!1J2 i p̄a~ar!#
sinhaz

sinhaz0
, ~44!

and to satisfyF150 on r5a, z5z0 , we must have the
condition
03660
@Jip̄a~aa!1J2 i p̄a~aa!#52 Re@Jip̄a~aa!#50. ~45!

This condition is satisfied whena is chosen to be a zero o
Eq. ~45!, a* , causing

Re@Jip̄a* ~a* a!#50. ~46!

Thus, this special case whereV150 justifies our initial
use of theJip̄a(ar) and Hip̄a

(2) (ar) functions as opposed to
the modified helical Bessel functions in Case I of Sec.
since the modified helical Bessel functions have no real ze
associated with them.

VI. CONCLUSIONS

Helical harmonic solutions of Laplace’s equation ha
been derived using a right-handed nonorthogonal helical
ordinate system and a modified separation of variables te
nique. Unlike the Cartesian or cylindrical coordinate sy
tems, in the helical system, two different sets of solutions
admitted, one right handed and one left handed. Con
quently, the helical harmonics are used to solve
boundary-value problem of two nested helices with differe
radii set to different potential values.
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